Publications

Showing entries 61 - 80 out of 109
Wiatowski T, Grohs P, Bölcskei H. Topology Reduction in Deep Convolutional Feature Extraction Networks. In Lu YM, Van De Ville D, Van De Ville D, Papadakis M, editors, Wavelets and Sparsity XVII: 6-9 August 2017, San Diego, California, United States. Bellingham, Washington: SPIE. 2017. 1039418. (Proceedings of SPIE, Vol. 10394). doi: 10.1117/12.2271761

Grohs P, Kutyniok G, Keiper S. Cartoon Approximation with α -Curvelets. Journal of Fourier Analysis and Applications. 2016 Dec;22(6):1235-1293. doi: 10.1007/s00041-015-9446-6


Grohs P, Keiper S, Kutyniok G, Schaefer M. α-Molecules. Applied and Computational Harmonic Analysis. 2016 Jul;41(1):297-336. doi: 10.1016/j.acha.2015.10.009

Grohs P, Wiatowski T, Boelcskei H. Deep Convolutional Neural Networks on Cartoon Functions. 2016. Paper presented at IEEE symposium on Information Theory, Barcelona, Spain.

Dahlke S, (ed.), DeMari F, (ed.), Grohs P, (ed.), Labate D, (ed.). Harmonic And Applied Analysis: From Groups to Signals. Cham: Springer, 2016. 256 p. (Applied and Numerical Harmonic Analysis).

Grohs P, Hardering H, Sander O. Optimal A Priori Discretization Error Bounds for Geodesic Finite Elements. Foundations of Computational Mathematics. 2015 Dec;15(6):1357-1411. doi: 10.1007/s10208-014-9230-z

Grohs P, Obermeier A. Ridgelet methods for linear transport equations. 2015. Paper presented at 8th International Conference: CURVES and SURFACES, Paris, France.

Grohs P, Kutyniok G. Parabolic Molecules. Foundations of Computational Mathematics. 2014 Apr;14(2):299-337. doi: 10.1007/s10208-013-9170-z

Grohs P, Keiper S, Kutyniok G, Schaefer M. Parabolic molecules: Curvelets, shearlets and beyond. In Fasshauer GE, Schumaker LL, editors, Approximation Theory XIV: San Antonio 2013. Cham: Springer. 2014. p. 141-172. (Springer Proceedings in Mathematics & Statistics, Vol. 83). doi: 10.1007/978-3-319-06404-8_9

Showing entries 61 - 80 out of 109