Publications

Showing entries 41 - 60 out of 109
Grohs P, (ed.), Holler M, (ed.), Weinmann A, (ed.). Handbook of Variational Methods for Nonlinear Geometric Data. Cham: Springer, 2020. 701 p. doi: 10.1007/978-3-030-31351-7

Berner J, Dablander M, Grohs P. Numerically Solving Parametric Families of High-Dimensional Kolmogorov Partial Differential Equations via Deep Learning. In Larochelle H, Ranzato M, Hadsell R, Balcan MF, Lin H, editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual. Cambridge, Mass.: MIT Press. 2020. (Advances in neural information processing systems : ... proceedings of the ... conference, Vol. 33). doi: https://proceedings.neurips.cc/paper/2020/file/c1714160652ca6408774473810765950-Paper.pdf

Grohs P, Koppensteiner S, Rathmair M. Phase Retrieval: Uniqueness and Stability. SIAM Review. 2020;62(2):301-350. doi: 10.1137/19M1256865

Bauer L, Grohs P, Wohlschläger A, Plant C. Planting Synchronisation Trees for Discovering Interaction Patterns among Brain Regions. In Papapetrou P, Cheng X, He Q, editors, Proceedings - 19th IEEE International Conference on Data Mining Workshops, ICDMW 2019: 8–11 November 2019 Beijing, China. Piscataway, NJ: IEEE. 2019. p. 1035-1036. 8955527. (International Conference on Data Mining workshops). doi: 10.1109/ICDMW.2019.00149

Grohs P, Elbrächter D, Berner J. How degenerate is the parametrization of neural networks with the ReLU activation function? In 32nd Conference on Neural Information Processing Systems (NeurIPS 2019): Vancouver, Canada, 8-14 December 2019. Red Hook, NY: Curran Associates. 2019. p. 7790-7801. (Advances in neural information processing systems : ... proceedings of the ... conference, Vol. 32).

Grohs P, Sander O, Sprecher M, Hardering H. Projection-Based Finite Elements for Nonlinear Function Spaces. SIAM Journal on Numerical Analysis. 2019;57(1):404-428. doi: 10.1137/18M1176798

Alaifari R, Daubechies I, Grohs P, Yin R. Stable Phase Retrieval in Infinite Dimensions. Foundations of Computational Mathematics. 2019;19(4):869–900. doi: 10.1007/s10208-018-9399-7

Berner J, Elbrächter D, Grohs P, Jentzen A. Towards a regularity theory for ReLU networks – chain rule and global error estimates. In 2019 13th International Conference on Sampling Theory and Applications (SampTA). Piscataway, NJ: IEEE. 2019. p. 1-5 doi: 10.1109/SampTA45681.2019.9031005

Wiatowski T, Grohs P, Bölcskei H. Energy Propagation in Deep Convolutional Neural Networks. IEEE TRANSACTIONS ON INFORMATION THEORY. 2018 Jul;64(7):4819-4842. doi: 10.1109/TIT.2017.2756880

Perekrestenko D, Grohs P, Elbrächter D, Bölcskei H. The Universal Approximation Power of Finite-Width Deep ReLU Networks. arXiv.org. 2018 Jun 5. doi: 10.48550/arXiv.1806.01528

Grohs P, Sander O, Starck JL, Wallner J. Nonlinear Data: Theory and Algorithms. Oberwolfach Reports. 2018;15(2):1161–1234. doi: 10.4171/OWR/2018/20

Grohs P, Sprecher M, Yu T. Scattered Manifold-Valued Data Approximation. Numerische Mathematik. 2017 Apr;135(4):987-1010. doi: 10.1007/s00211-016-0823-0

Grohs P, Wiatowski T, Bölcskei H. Energy decay and conservation in deep convolutional neural networks. In Kramer G, editor, 2017 IEEE International Symposium on Information Theory, ISIT 2017: Aachen, 25-30 June 2017. Piscataway, NJ: IEEE. 2017. p. 1356-1360. 8006750. (IEEE International Symposium on Information Theory , Vol. 2017). doi: 10.1109/ISIT.2017.8006750

Bölcskei H, Grohs P, Kutyniok G, Petersen PC. Memory Optimal Neural Network Approximation. In Lu YM, VanDeVille D, Papadakis M, editors, Wavelets and Sparsity XVII: 6-9 August 2017, San Diego, California, United States. Bellingham, Washington: SPIE. 2017. 103940Q. (Proceedings of SPIE, Vol. 10394). doi: 10.1117/12.2272490

Showing entries 41 - 60 out of 109