Publications

Showing entries 1 - 20 out of 109
Grohs P, Voigtlaender F. Proof of the Theory-to-Practice Gap in Deep Learning via Sampling Complexity bounds for Neural Network Approximation Spaces. 2024 Aug, p. 1085-1143. Epub 2024 Jul 12. doi: 10.1007/s10208-023-09607-w

Scherbela M, Gerard L, Grohs P. Towards a transferable fermionic neural wavefunction for molecules. Nature Communications. 2024 Jan 2;15(1):120. Epub 2024 Jan 2. doi: 10.1038/s41467-023-44216-9

Harar P, Herrmann L, Grohs P, Haselbach D. FakET: Simulating Cryo-Electron Tomograms with Neural Style Transfer. 2023. Epub 2023 Apr 17. doi: 10.48550/ARXIV.2304.02011

Grohs P, Voigtländer F. Sobolev-type embeddings for neural network approximation spaces. 2 ed. 2023 Apr, p. 579-599. doi: 10.1007/s00365-022-09598-x

Grohs P, Klotz A, Voigtlaender F. Phase Transitions in Rate Distortion Theory and Deep Learning. Foundations of Computational Mathematics. 2023 Feb;23(1):329-392. Epub 2021 Nov 16. doi: 10.1007/s10208-021-09546-4

Grohs P, Liehr L. Injectivity of Gabor phase retrieval from lattice measurements. Applied and Computational Harmonic Analysis. 2023 Jan;62:173-193. doi: https://arxiv.org/abs/2008.07238, 10.1016/j.acha.2022.09.001

Berner J, Grohs P, Voigtlaender F. Learning ReLU networks to high uniform accuracy is intractable. 2023. Paper presented at The Eleventh International Conference on Learning Representations: ICLR 2023.

Grohs P, Hornung F, Jentzen A, Zimmermann P. Space-time error estimates for deep neural network approximations for differential equations. Advances in Computational Mathematics. 2023;49:4. doi: 10.48550/arXiv.1908.03833, 10.1007/s10444-022-09970-2

Scherbela M, Gerard L, Grohs P. Variational Monte Carlo on a Budget - Fine-tuning pretrained Neural Wavefunctions. In Advances in Neural Information Processing Systems 36 (NeurIPS 2023). 2023

Abdeljawad A, Grohs P. Integral representations of shallow neural network with Rectified Power Unit activation function. Neural Networks. 2022 Nov;155:536 - 550. Epub 2022 Sept 14. doi: 10.1016/j.neunet.2022.09.005

Liehr L, Grohs P. Phaseless sampling on square-root lattices. 2022 Sept 22. doi: 10.48550/arXiv.2209.11127

Showing entries 1 - 20 out of 109